skip to main content


Search for: All records

Creators/Authors contains: "Quinn, Thomas R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. ABSTRACT

    The formation of supermassive black holes (SMBHs) in the Universe and its role in the properties of the galaxies is one of the open questions in astrophysics and cosmology. Though, traditionally, electromagnetic waves have been instrumental in direct measurements of SMBHs, significantly influencing our comprehension of galaxy formation, gravitational waves (GW) bring an independent avenue to detect numerous binary SMBHs in the observable Universe in the nano-Hertz range using the pulsar timing array observation. This brings a new way to understand the connection between the formation of binary SMBHs and galaxy formation if we can connect theoretical models with multimessenger observations namely GW data and galaxy surveys. Along these lines, we present here the first paper on this series based on romulus25 cosmological simulation on the properties of the host galaxies of SMBHs and propose on how this can be used to connect with observations of nano-Hertz GW signal and galaxy surveys. We show that the most dominant contribution to the background will arise from sources with high chirp masses which are likely to reside in low-redshift early-type galaxies with high stellar mass, largely old stellar population, and low star formation rate, and that reside at centres of galaxy groups and manifest evidence of recent mergers. The masses of the sources show a correlation with the halo mass and stellar mass of the host galaxies. This theoretical study will help in understanding the host properties of the GW sources and can help in establishing a connection with observations.

     
    more » « less
  2. Abstract

    We are entering an era in which we will be able to detect and characterize hundreds of dwarf galaxies within the Local Volume. It is already known that a strong dichotomy exists in the gas content and star formation properties of field dwarf galaxies versus satellite dwarfs of larger galaxies. In this work, we study the more subtle differences that may be detectable in galaxies as a function of distance from a massive galaxy, such as the Milky Way. We compare smoothed particle hydrodynamic simulations of dwarf galaxies formed in a Local Volume-like environment (several megaparsecs away from a massive galaxy) to those formed nearer to Milky Way–mass halos. We find that the impact of environment on dwarf galaxies extends even beyond the immediate region surrounding Milky Way–mass halos. Even before being accreted as satellites, dwarf galaxies near a Milky Way–mass halo tend to have higher stellar masses for their halo mass than more isolated galaxies. Dwarf galaxies in high-density environments also tend to grow faster and form their stars earlier. We show observational predictions that demonstrate how these trends manifest in lower quenching rates, higher Hifractions, and bluer colors for more isolated dwarf galaxies.

     
    more » « less
  3. Abstract

    Formation models in which terrestrial bodies grow via the pairwise accretion of planetesimals have been reasonably successful at reproducing the general properties of the Solar System, including small-body populations. However, planetesimal accretion has not yet been fully explored in the context of the wide variety of recently discovered extrasolar planetary systems, in particular those that host short-period terrestrial planets. In this work, we use directN-body simulations to explore and understand the growth of planetary embryos from planetesimals in disks extending down to ≃1 day orbital periods. We show that planetesimal accretion becomes nearly 100% efficient at short orbital periods, leading to embryo masses that are much larger than the classical isolation mass. For rocky bodies, the physical size of the object begins to occupy a significant fraction of its Hill sphere toward the inner edge of the disk. In this regime, most close encounters result in collisions, rather than scattering, and the system does not develop a bimodal population of dynamically hot planetesimals and dynamically cold oligarchs, as is seen in previous studies. The highly efficient accretion seen at short orbital periods implies that systems of tightly packed inner planets should be almost completely devoid of any residual small bodies. We demonstrate the robustness of our results to assumptions about the initial disk model, and we also investigate the effects that our simplified collision model has on the emergence of this non-oligarchic growth mode in a planet-forming disk.

     
    more » « less
  4. Abstract

    We study satellite counts and quenched fractions for satellites of Milky Way analogs inRomulus25, a large-volume cosmological hydrodynamic simulation. Depending on the definition of a Milky Way analog, we have between 66 and 97 Milky Way analogs inRomulus25, a 25 Mpc per-side uniform volume simulation. We use these analogs to quantify the effect of environment and host properties on satellite populations. We find that the number of satellites hosted by a Milky Way analog increases predominantly with host stellar mass, while environment, as measured by the distance to a Milky Way–mass or larger halo, may have a notable impact in high isolation. Similarly, we find that the satellite quenched fraction for our analogs also increases with host stellar mass, and potentially in higher-density environments. These results are robust for analogs within 3 Mpc of another Milky Way–mass or larger halo, the environmental parameter space where the bulk of our sample resides. We place these results in the context of observations through comparisons to the Exploration of Local VolumE Satellites and Satellites Around Galactic Analogs surveys. Our results are robust to changes in Milky Way analog selection criteria, including those that mimic observations. Finally, as our samples naturally include Milky Way–Andromeda pairs, we examine quenched fractions in pairs versus isolated systems. We find potential evidence, though not conclusive, that pairs, defined as being within 1 Mpc of another Milky Way–mass or larger halo, may have higher satellite quenched fractions.

     
    more » « less
  5. ABSTRACT

    Using high-resolution Romulus simulations, we explore the origin and evolution of the circumgalactic medium (CGM) in the region 0.1 ≤ R/R500 ≤ 1 around massive central galaxies in group-scale halos. We find that the CGM is multiphase and highly dynamic. Investigating the dynamics, we identify seven patterns of evolution. We show that these are robust and detected consistently across various conditions. The gas cools via two pathways: (1) filamentary cooling inflows and (2) condensations forming from rapidly cooling density perturbations. In our cosmological simulations, the perturbations are mainly seeded by orbiting substructures. The condensations can form even when the median tcool/tff of the X-ray emitting gas is above 10 or 20. Strong amplitude perturbations can provoke runaway cooling regardless of the state of the background gas. We also find perturbations whose local tcool/tff ratios drop below the threshold but which do not condense. Rather, the ratios fall to some minimum value and then bounce. These are weak perturbations that are temporarily swept up in satellite wakes and carried to larger radii. Their tcool/tff ratios decrease because tff is increasing, not because tcool is decreasing. For structures forming hierarchically, our study highlights the challenge of using a simple threshold argument to infer the CGM’s evolution. It also highlights that the median hot gas properties are suboptimal determinants of the CGM’s state and dynamics. Realistic CGM models must incorporate the impact of mergers and orbiting satellites, along with the CGM’s heating and cooling cycles.

     
    more » « less
  6. Abstract

    We analyze the circumgalactic medium (CGM) for eight commonly-used cosmological codes in the AGORA collaboration. The codes are calibrated to use identical initial conditions, cosmology, heating and cooling, and star formation thresholds, but each evolves with its own unique code architecture and stellar feedback implementation. Here, we analyze the results of these simulations in terms of the structure, composition, and phase dynamics of the CGM. We show properties such as metal distribution, ionization levels, and kinematics are effective tracers of the effects of the different code feedback and implementation methods, and as such they can be highly divergent between simulations. This is merely a fiducial set of models, against which we will in the future compare multiple feedback recipes for each code. Nevertheless, we find that the large parameter space these simulations establish can help disentangle the different variables that affect observable quantities in the CGM, e.g., showing that abundances for ions with higher ionization energy are more strongly determined by the simulation’s metallicity, while abundances for ions with lower ionization energy are more strongly determined by the gas density and temperature.

     
    more » « less
  7. ABSTRACT

    Contrary to many stereotypes about massive galaxies, observed brightest group galaxies (BGGs) are diverse in their star formation rates, kinematic properties, and morphologies. Studying how they evolve into and express such diverse characteristics is an important piece of the galaxy formation puzzle. We use a high-resolution cosmological suite of simulations Romulus and compare simulated central galaxies in group-scale haloes at z = 0 to observed BGGs. The comparison encompasses the stellar mass–halo mass relation, various kinematic properties and scaling relations, morphologies, and the star formation rates. Generally, we find that Romulus reproduces the full spectrum of diversity in the properties of the BGGs very well, albeit with a tendency toward lower than the observed fraction of quenched BGGs. We find both early-type S0 and elliptical galaxies as well as late-type disc galaxies; we find Romulus galaxies that are fast-rotators as well as slow-rotators; and we observe galaxies transforming from late-type to early-type following strong dynamical interactions with satellites. We also carry out case studies of selected Romulus galaxies to explore the link between their properties, and the recent evolution of the stellar system as well as the surrounding intragroup/circumgalactic medium. In general, mergers/strong interactions quench star-forming activity and disrupt the stellar disc structure. Sometimes, however, such interactions can also trigger star formation and galaxy rejuvenation. Black hole feedback can also lead to a decline of the star formation rate but by itself, it does not typically lead to complete quenching of the star formation activity in the BGGs.

     
    more » « less
  8. Abstract

    We use hydrodynamical simulations of two Milky Way–mass galaxies to demonstrate the impact of cosmic-ray pressure on the kinematics of cool and warm circumgalactic gas. Consistent with previous studies, we find that cosmic-ray pressure can dominate over thermal pressure in the inner 50 kpc of the circumgalactic medium (CGM), creating an overall cooler CGM than that of similar galaxy simulations run without cosmic rays. We generate synthetic sight lines of the simulated galaxies’ CGM and use Voigt profile-fitting methods to extract ion column densities, Doppler-bparameters, and velocity centroids of individual absorbers. We directly compare these synthetic spectral line fits with HST/COS CGM absorption-line data analyses, which tend to show that metallic species with a wide range of ionization potential energies are often kinematically aligned. Compared to the Milky Way simulation run without cosmic rays, the presence of cosmic-ray pressure in the inner CGM creates narrower Oviabsorption features and broader Siiiiabsorption features, a quality that is more consistent with observational data. Additionally, because the cool gas is buoyant due to nonthermal cosmic-ray pressure support, the velocity centroids of both cool and warm gas tend to align in the simulated Milky Way with feedback from cosmic rays. Our study demonstrates that detailed, direct comparisons between simulations and observations, focused on gas kinematics, have the potential to reveal the dominant physical mechanisms that shape the CGM.

     
    more » « less
  9. We use hydrodynamical simulations of two Milky Way-mass galaxies to demonstrate the impact of cosmic-ray pressure on the kinematics of cool and warm circumgalactic gas. Consistent with previous studies, we find that cosmic-ray pressure can dominate over thermal pressure in the inner 50 kpc of the circumgalactic medium (CGM), creating an overall cooler CGM than that of similar galaxy simulations run without cosmic rays. We generate synthetic sightlines of the simulated galaxies' CGM and use Voigt profile fitting methods to extract ion column densities, Doppler-b parameters, and velocity centroids of individual absorbers. We directly compare these synthetic spectral line fits with HST/COS CGM absorption-line data analyses, which tend to show that metallic species with a wide range of ionization potential energies are often kinematically aligned. Compared to the Milky-Way simulation run without cosmic rays, the presence of cosmic-ray pressure in the inner CGM creates narrower OVI absorption features and broader SiIII absorption features, a quality which is more consistent with observational data. Additionally, because the cool gas is buoyant due to nonthermal cosmic-ray pressure support, the velocity centroids of both cool and warm gas tend to align in the simulated Milky Way with feedback from cosmic rays. Our study demonstrates that detailed, direct comparisons between simulations and observations, focused on gas kinematics, have the potential to reveal the dominant physical mechanisms that shape the CGM. 
    more » « less