skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Quinn, Thomas R"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Abstract A consequence of a nonzero occupation fraction of massive black holes (MBHs) in dwarf galaxies is that these MBHs can become residents of larger galaxy halos via hierarchical merging and tidal stripping. Depending on the parameters of their orbits and original hosts, some of these MBHs will merge with the central supermassive black hole in the larger galaxy. We examine four cosmological zoom-in simulations of Milky Way-like galaxies to study the demographics of the black hole mergers that originate from dwarf galaxies. Approximately half of these mergers have mass ratios less than 0.04, which we categorize as intermediate mass ratio inspirals, or IMRIs. Inspiral durations range from 0.5–8 Gyr, depending on the compactness of the dwarf galaxy. Approximately half of the inspirals may become more circular with time, while the eccentricity of the remainder does not evolve. Overall, IMRIs in Milky Way-like galaxies are a significant class of black hole mergers that can be detected by LISA, and must be prioritized for waveform modeling. 
    more » « less
    Free, publicly-accessible full text available June 19, 2026
  2. Abstract The interaction between supermassive black hole (SMBH) feedback and the circumgalactic medium (CGM) continues to be an open question in galaxy evolution. In our study, we use smoothed particle hydrodynamics simulations to explore the impact of SMBH feedback on galactic metal retention and the motion of metals and gas into and through the CGM of L*galaxies. We examine 140 galaxies from the 25 Mpc cosmological volume Romulus25, with stellar masses between log(M*/M) = 9.5–11.5. We measure the fraction of metals remaining in the interstellar medium (ISM) and CGM of each galaxy and calculate the expected mass of each SMBH based on theMBH–σrelation (Kormendy & Ho 2013). The deviation of each SMBH from its expected mass, ΔMBH, is compared to the potential of its host viaσ. We find that SMBHs with accreted mass aboveMBH–σare more effective at removing metals from the ISM than undermassive SMBHs in star-forming galaxies. Overall, overmassive SMBHs suppress the total star formation of their host galaxies and more effectively move metals from the ISM into the CGM. However, we see little to no evacuation of gas from the CGM out of their halos, in contrast with other simulations. Finally, we predict that Civcolumn densities in the CGM of L*galaxies are unlikely to depend on host galaxy SMBH mass. Our results show that the scatter in the low-mass end of the MBH–σrelation may indicate how effective an SMBH is in the local redistribution of mass in its host galaxy. 
    more » « less
  3. Abstract We examine the quenching characteristics of 328 isolated dwarf galaxies 10 8 < M star / M < 10 10 within theRomulus25cosmological hydrodynamic simulation. Using mock-observation methods, we identify isolated dwarf galaxies with quenched star formation and make direct comparisons to the quenched fraction in the NASA Sloan Atlas (NSA). Similar to other cosmological simulations, we find a population of quenched, isolated dwarf galaxies belowMstar< 109Mnot detected within the NSA. We find that the presence of massive black holes (MBHs) inRomulus25is largely responsible for the quenched, isolated dwarfs, while isolated dwarfs without an MBH are consistent with quiescent fractions observed in the field. Quenching occurs betweenz= 0.5–1, during which the available supply of star-forming gas is heated or evacuated by MBH feedback. Mergers or interactions seem to play little to no role in triggering the MBH feedback. At low stellar masses,Mstar≲ 109.3M, quenching proceeds across several Gyr as the MBH slowly heats up gas in the central regions. At higher stellar masses,Mstar≳ 109.3M, quenching occurs rapidly within 1 Gyr, with the MBH evacuating gas from the central few kpc of the galaxy and driving it to the outskirts of the halo. Our results indicate the possibility of substantial star formation suppression via MBH feedback within dwarf galaxies in the field. On the other hand, the apparent overquenching of dwarf galaxies due to MBH suggests that higher-resolution and/or better modeling is required for MBHs in dwarfs, and quenched fractions offer the opportunity to constrain current models. 
    more » « less
  4. Abstract We are entering an era in which we will be able to detect and characterize hundreds of dwarf galaxies within the Local Volume. It is already known that a strong dichotomy exists in the gas content and star formation properties of field dwarf galaxies versus satellite dwarfs of larger galaxies. In this work, we study the more subtle differences that may be detectable in galaxies as a function of distance from a massive galaxy, such as the Milky Way. We compare smoothed particle hydrodynamic simulations of dwarf galaxies formed in a Local Volume-like environment (several megaparsecs away from a massive galaxy) to those formed nearer to Milky Way–mass halos. We find that the impact of environment on dwarf galaxies extends even beyond the immediate region surrounding Milky Way–mass halos. Even before being accreted as satellites, dwarf galaxies near a Milky Way–mass halo tend to have higher stellar masses for their halo mass than more isolated galaxies. Dwarf galaxies in high-density environments also tend to grow faster and form their stars earlier. We show observational predictions that demonstrate how these trends manifest in lower quenching rates, higher Hifractions, and bluer colors for more isolated dwarf galaxies. 
    more » « less
  5. Abstract We study satellite counts and quenched fractions for satellites of Milky Way analogs inRomulus25, a large-volume cosmological hydrodynamic simulation. Depending on the definition of a Milky Way analog, we have between 66 and 97 Milky Way analogs inRomulus25, a 25 Mpc per-side uniform volume simulation. We use these analogs to quantify the effect of environment and host properties on satellite populations. We find that the number of satellites hosted by a Milky Way analog increases predominantly with host stellar mass, while environment, as measured by the distance to a Milky Way–mass or larger halo, may have a notable impact in high isolation. Similarly, we find that the satellite quenched fraction for our analogs also increases with host stellar mass, and potentially in higher-density environments. These results are robust for analogs within 3 Mpc of another Milky Way–mass or larger halo, the environmental parameter space where the bulk of our sample resides. We place these results in the context of observations through comparisons to the Exploration of Local VolumE Satellites and Satellites Around Galactic Analogs surveys. Our results are robust to changes in Milky Way analog selection criteria, including those that mimic observations. Finally, as our samples naturally include Milky Way–Andromeda pairs, we examine quenched fractions in pairs versus isolated systems. We find potential evidence, though not conclusive, that pairs, defined as being within 1 Mpc of another Milky Way–mass or larger halo, may have higher satellite quenched fractions. 
    more » « less
  6. Abstract We explore the characteristics of actively accreting massive black holes (MBHs) within dwarf galaxies in the Romulus25cosmological hydrodynamic simulation. We examine the MBH occupation fraction, X-ray active fractions, and active galactic nucleus (AGN) scaling relations within dwarf galaxies of stellar mass 108M<Mstar< 1010Mout to redshiftz= 2. In the local universe, the MBH occupation fraction is consistent with observed constraints, dropping below unity atMstar< 3 × 1010M,M200< 3 × 1011M. Local dwarf AGN in Romulus25follow observed scaling relations between AGN X-ray luminosity, stellar mass, and star formation rate, though they exhibit slightly higher active fractions and number densities than comparable X-ray observations. Sincez= 2, the MBH occupation fraction has decreased, the population of dwarf AGN has become overall less luminous, and as a result the overall number density of dwarf AGN has diminished. We predict the existence of a large population of MBHs in the local universe with low X-ray luminosities and high contamination from X-ray binaries and the hot interstellar medium that are undetectable by current X-ray surveys. These hidden MBHs make up 76% of all MBHs in local dwarf galaxies and include many MBHs that are undermassive relative to their host galaxy’s stellar mass. Their detection relies on not only greater instrument sensitivity but also better modeling of X-ray contaminants or multiwavelength surveys. Our results indicate that dwarf AGN were substantially more active in the past, despite having low luminosity today, and that future deep X-ray surveys may uncover many hidden MBHs in dwarf galaxies out to at leastz= 2. 
    more » « less
  7. ABSTRACT We develop a hybrid model of galactic chemical evolution that combines a multiring computation of chemical enrichment with a prescription for stellar migration and the vertical distribution of stellar populations informed by a cosmological hydrodynamic disc galaxy simulation. Our fiducial model adopts empirically motivated forms of the star formation law and star formation history, with a gradient in outflow mass loading tuned to reproduce the observed metallicity gradient. With this approach, the model reproduces many of the striking qualitative features of the Milky Way disc’s abundance structure: (i) the dependence of the [O/Fe]–[Fe/H] distribution on radius Rgal and mid-plane distance |z|; (ii) the changing shapes of the [O/H] and [Fe/H] distributions with Rgal and |z|; (iii) a broad distribution of [O/Fe] at sub-solar metallicity and changes in the [O/Fe] distribution with Rgal, |z|, and [Fe/H]; (iv) a tight correlation between [O/Fe] and stellar age for [O/Fe] > 0.1; (v) a population of young and intermediate-age α-enhanced stars caused by migration-induced variability in the Type Ia supernova rate; (vi) non-monotonic age–[O/H] and age–[Fe/H] relations, with large scatter and a median age of ∼4 Gyr near solar metallicity. Observationally motivated models with an enhanced star formation rate ∼2 Gyr ago improve agreement with the observed age–[Fe/H] and age–[O/H] relations, but worsen agreement with the observed age–[O/Fe] relation. None of our models predict an [O/Fe] distribution with the distinct bimodality seen in the observations, suggesting that more dramatic evolutionary pathways are required. All code and tables used for our models are publicly available through the Versatile Integrator for Chemical Evolution (VICE; https://pypi.org/project/vice). 
    more » « less
  8. We use hydrodynamical simulations of two Milky Way-mass galaxies to demonstrate the impact of cosmic-ray pressure on the kinematics of cool and warm circumgalactic gas. Consistent with previous studies, we find that cosmic-ray pressure can dominate over thermal pressure in the inner 50 kpc of the circumgalactic medium (CGM), creating an overall cooler CGM than that of similar galaxy simulations run without cosmic rays. We generate synthetic sightlines of the simulated galaxies' CGM and use Voigt profile fitting methods to extract ion column densities, Doppler-b parameters, and velocity centroids of individual absorbers. We directly compare these synthetic spectral line fits with HST/COS CGM absorption-line data analyses, which tend to show that metallic species with a wide range of ionization potential energies are often kinematically aligned. Compared to the Milky-Way simulation run without cosmic rays, the presence of cosmic-ray pressure in the inner CGM creates narrower OVI absorption features and broader SiIII absorption features, a quality which is more consistent with observational data. Additionally, because the cool gas is buoyant due to nonthermal cosmic-ray pressure support, the velocity centroids of both cool and warm gas tend to align in the simulated Milky Way with feedback from cosmic rays. Our study demonstrates that detailed, direct comparisons between simulations and observations, focused on gas kinematics, have the potential to reveal the dominant physical mechanisms that shape the CGM. 
    more » « less
  9. null (Ed.)
    ABSTRACT Kinematic studies of disc galaxies, using individual stars in the Milky Way or statistical studies of global disc kinematics over time, provide insight into how discs form and evolve. We use a high-resolution, cosmological zoom-simulation of a Milky Way-mass disc galaxy (h277) to tie together local disc kinematics and the evolution of the disc over time. The present-day stellar age–velocity relationship (AVR) of h277 is nearly identical to that of the analogous solar-neighbourhood measurement in the Milky Way. A crucial element of this success is the simulation’s dynamically cold multiphase ISM, which allows young stars to form with a low velocity dispersion (σbirth$$\sim \!6 - 8 \ \mathrm{km\, s}^{-1}$$) at late times. Older stars are born kinematically hotter (i.e. the disc settles over time in an ‘upside-down’ formation scenario), and are subsequently heated after birth. The disc also grows ‘inside-out’, and many of the older stars in the present-day solar neighbourhood are present because of radial mixing. We demonstrate that the evolution of σbirth in h277 can be explained by the same model used to describe the general decrease in velocity dispersion observed in disc galaxies from z ∼ 2–3 to the present-day, in which the disc evolves in quasi-stable equilibrium and the ISM velocity dispersion decreases over time due to a decreasing gas fraction. Thus, our results tie together local observations of the Milky Way’s AVR with observed kinematics of high z disc galaxies. 
    more » « less